
952-500-6200 www.exlar.comTECH TIP

TECH TIP

Tritex Modbus Protocol Specification

Introduction
This document describes Tritex’s implementation
of the MODBUS communication protocol used
for transferring data between a serial host and an
Exlar drive. MODBUS is a Master/Slave (Client/
Server) application layer messaging protocol
allowing communications between a single
master (client) device and a single or multiple
slave (server) device(s) on different types of
buses or networks.

The MODBUS protocol may be implemented
on a variety of hardware networking platforms.
This document deals only with the Tritex
implementation of MODBUS over a serial line
using the MODBUS RTU (Remote Terminal
Unit) transmission mode. RTU is the binary
implementation of the protocol encoding data
in eight-bit binary bytes and implementing CRC
error checking on each transmission. The ASCII
implementation of the protocol (which encodes
each byte as two ASCII seven-bit characters) is
not supported.

References
MODBUS Application Protocol Specification V1.1
MODBUS over Serial Line – Specification &
Implementation Guide V1.0

Modbus.org maintains the specifications for
implementation of the MODBUS protocol.
Current documents are available directly from
www.Modbus-IDA.org.

General Protocol Description
ADU/PDU
MODBUS protocol defines a protocol data unit
(PDU) which is independent of the underlying
communication layer used for transmission. The
application data unit (ADU) includes additional
fields used to implement the protocol on specific
communication buses or networks. The Tritex
implementation of MODBUS RTU over a serial
line uses the ADU shown below.

ADU
Address
(1 byte) PDU

CRC
(2 bytes)

ID

Function
Code

(1 byte)
Data

(in bytes) Low : High

MODBUS is, in general, a request-response
protocol. The ADU describes the data format
used for both the master’s transmission to the
slave (the request) and the slave’s transmission
to the master (the response). The complete
request-response is considered a transaction.
A slave device will never transmit a response
without first having received a legal (properly
formatted and CRC validated) request.

Function Code
The first byte of the PDU is an agreed upon
code that describes the type of transaction
taking place and the format of the data in the
transmission. The function codes specify the
services offered by the protocol and tell the slave

952-500-6200 www.exlar.comTECH TIP

(server) what type of action to perform. Function
codes 128 (0x80) to 255 (0xFF) are reserved
for exception (error) responses. When the slave
responds to the master the function code field
in the response indicates either a normal (error-
free) response or an error response. In a normal
response the slave simply echoes the original
function code in the response. An error response
is indicated by returning the original function code
with the high bit (0x80) set in the function code
field.

Data
The content of the data field in the PDU is
dependent on the type of transaction. The data
field is an optional field and may not be required
for all transaction types. The data field contains
additional information that the server uses to take
the action defined by the function code. Unless
specified otherwise, MODBUS uses a big-Endian
format for addresses and other items in the data
field when the data is larger than a single byte.
In big-Endian format the most significant byte is
sent first.

Address
The MODBUS address (ID) is a single byte
identifier of the slave device. A slave will transmit
a response only to a request addressed to
it. MODBUS protocol specifies that the slave
address must be in the range of 1 to 247.
A master request with an address of zero is
considered a global request (broadcast mode). All
slaves may act on a global request but none will
respond to it. The global request is an exception
the standard request-response protocol. Although
the Tritex implementation supports the use of
an ADU with global request addressing, its use
is discouraged and the verification of its receipt
and acceptance by any or all of the drives on the

serial line is the responsibility of the user. For
instance, it may be useful for a master to stop or
disable all drive with a single transmission but
it should then verify the status of each drive to
guarantee that the transmission was received,
accepted, and acted upon by the drives.

CRC
The CRC (Cyclic Redundancy Check) field of the
ADU is used by the slave to validate the request
or by the master to validate the response. It is
a two-byte field and, unlike normal MODBUS
16-bit data fields, is always transmitted in Little
Endian format with the low byte transmitted
first and the high byte transmitted second. The
CRC is calculated by the transmitting device
and appended to ADU. The CRC is recalculated
by the receiving device and compared with the
value in the ADU. It is an error if the values do
not match. A slave device cannot respond to a
request, even if it seems properly addressed
and otherwise formatted, when a CRC error has
been detected (note that there is no MODBUS
exception code for a CRC error) since it cannot
count on the state of any of the data in the
transaction. Instead, the master will eventually
time out waiting for a response and may resend
the request if desired. The master may also
resend a request, if desired, when it detects a
CRC error in a response from a slave.

Exception Response
The PDU of an exception (error) response from
the slave consists of the original function code
with the high bit set and a single byte data field
(the exception code) indicating the type of error
that has occurred. The following table indicates
possible exception codes used in the Tritex
implementation.

952-500-6200 www.exlar.comTECH TIP

MODBUS Exception Codes
Code Name Meaning
01 ILLEGAL FUNCTION The function code received in the request is not an

allowable action for the server (slave). This error may occur
when the function code is only applicable to newer devices
and was not implemented in current device, when the
function code is unrecognized, or when the slave is in an
invalid state to process the specified function code.

02 ILLEGAL DATA ADDRESS The data address specified in the request is not an
allowable address for the server (slave). More specifically,
the combination of reference number and transfer length is
invalid.

03 ILLEGAL DATA VALUE A value specified in the request is not an allowable value
for the server (slave), indicating a fault in the structure of
the remainder of the request. This error DOES NOT mean
that a data item submitted for storage in a register has a
value outside the expected range for the register.

04 SLAVE DEVICE FAILURE An unrecoverable error occurred while the server (slave)
was attempting to perform the request.

Register Addresses
The MODBUS data model works with 16-bit data
elements called MODBUS data registers. Within
the PDU, every 16-bit data element is addressed
(identified) by an implementation defined 16-bit
data register address in the range of 0 to 65535
(0x0000 .. 0xFFFF). These addresses are not
physical addresses, but logical addresses defined
by the implementation to organize the data. The
internal physical mapping of the data may or
may not be contiguous with the logical mapping
and is normally of no concern to the user of the
data. The MODBUS data model imposes no
restrictions on the logical groupings. Multiple data
registers may, in fact, refer to the same physical
address.

Most function codes deal with the reading and
writing of data to and from MODBUS registers.
Each function code defines the data accessed
through its data registers. Read- only data
registers containing data that cannot be written to
and are called Input Registers, while read-write
registers containing data that can be both read
and written are called Holding Registers.

Historical Note
Some MODBUS implementations make
a distinction between a zero-based PDU
register address in the range 0 to 65535
and a MODBUS Data Model register or
element number in the range of 1 to 65536
where the PDU register address is always
one less than the address specified in the
Data Model. This discrepancy can be quite
confusing and the Tritex documentation
makes no such distinction, always describing
the actual PDU (zero based) register
address number in its documentation.

952-500-6200 www.exlar.comTECH TIP

Function Codes
Public Function Codes
MODBUS protocol defines several standard
publicly documented function codes whose
format and use must conform to the existing
standard. The following public function codes are
supported in the Tritex implementation.

•	 03 (0x03) - Read Holding Registers
•	 04 (0x04) - Read Input Registers
•	 06 (0x06) - Write Single Register
•	 16 (0x10) - Write Multiple Registers
•	 17 (0x11) - Report Slave ID

Custom Function Codes
Custom (user-defined) function codes within the
MODBUS specification must be in the range
65 to 72 or 100 to 110 decimal. The Tritex
implementation uses the following custom
function codes to deal with 32-bit data.

•	 103 (0x67) - Read 32-bit Holding Registers
•	 104 (0x68) - Read 32-bit Input Registers
•	 106 (0x6A) - Write 32-bit Holding Register

The 32-bit function codes allow the user an
alternative to reading or writing multiple 16- bit
registers and expect or return the 32-bit value in
standard MODBUS Big Endian(high word : low
word) format. Although each 32-bit register may
be read or written using the standard read/write
multiple register function codes, the custom 32-bit
codes guarantee that the full 32-bit register value
is read or written in a single, non-interruptible
(atomic) operation, guaranteeing data integrity.

Without this guarantee, asynchronous processes
in the drive could act on a partially written value
or overwrite a value that was only partially read.

Unsupported Function Codes
Standard MODBUS public function codes dealing
with reading and writing of single or multiple bits
(discrete inputs and coils) are not supported. All
data is dealt with in either 16-bit (word) or 32-bit
(double word) register quantities.

Function Code Descriptions
This section describes the PDU format of
both the request and response portion of the
MODBUS transaction for all supported function
codes. Exception codes that may be returned in
an error response to the request are also listed.
All descriptions show only the format of the PDU,
the MODBUS ID and CRC fields of the full MDU
are not shown.

An error response specifying an ILLEGAL
FUNCTION exception code (01) will be given for
any (properly formatted) request received by the
drive that contains a function code other than one
listed in this section.

Function Code 03 (0x03) Read Holding
Registers
This function code reads a contiguous block
of 16-bit holding registers. The Request PDU
specifies the starting register address and the
number of registers to read. The Response PDU
returns the register values packed as two bytes
per register – the first byte contains the high
order bits and the second byte contains the low
order bits.

Request
Function Code 1 byte 0x03

Starting Address 2 bytes 0x0000 to 0xFFFF
Number of Registers 2 bytes 1 to 60

952-500-6200 www.exlar.comTECH TIP

Response
Function Code 1 byte 0x03
Byte Count 1 byte 2 x N*
Register Value(s) 2 x N* bytes value(s)

*N = number of registers

Exception Response
Function Code 1 byte 0x83
Exception Code 1 byte 01, 02, 03, 04

Example
This example reads 16-bit holding registers 100 (0x64) and 101 (0x65). The value returned for
register 100 is 500 (0x01F4) and the value returned for register 101 is 1000 (0x03E8).

Request Response
Function Code 0x03 Function Code 0x03
Starting Address High 0x00 Byte Count 0x04
Starting Address Low 0x64 Register 100 Value High 0x01
Register Count High 0x00 Register 100 Value Low 0xF4
Register Count Low 0x02 Register 101 Value High 0x03

Register 101 Value Low 0xE8

Function Code 04 (0x04) Read Input
Registers
This function code reads a contiguous block of
16-bit input registers. The Request PDU specifies
the starting register address and the number of

registers to read. The Response PDU returns the
register values packed as two bytes per register –
the first byte contains the high order bits and the
second byte contains the low order bits.

Request
Function Code 1 byte 0x04
Starting Address 2 bytes 0x0000 to 0xFFFF
Number of Registers 2 bytes 1 to 60

Response
Function Code 1 byte 0x04
Byte Count 1 byte 2 x N*
Register Value(s) 2 x N* bytes value(s)

*N = number of registers

952-500-6200 www.exlar.comTECH TIP

Exception Response
Function Code 1 byte 0x84
Exception Code 1 byte 01, 02, 03, 04

Example
This example reads 16-bit input registers 4 and 5. The value returned for register 4 is 32768

(0x8000) and the value returned for register 5 is 32767 (0x7FFF).

Request Response
Function Code 0x04 Function Code 0x04
Starting Address High 0x00 Byte Count 0x04
Starting Address Low 0x04 Register 4 Value High 0x80
Register Count High 0x00 Register 4 Value Low 0x00
Register Count Low 0x02 Register 5 Value High 0x7F

Register 5 Value Low 0xFF

Example
This example reads 16-bit input register 5. The value returned for register 5 is 32767 (0x7FFF).

Often, only the most significant 16-bits of a 32-bit value are required. This example also
illustrates how to read the high 16-bits of the 32-bit register at MODBUS address 4 used

in the example above.
Request Response

Function Code 0x04 Function Code 0x04
Starting Address High 0x00 Byte Count 0x02
Starting Address Low 0x05 Register 5 Value High 0x7F
Register Count High 0x00 Register 5 Value Low 0xFF
Register Count Low 0x01

Request
Function Code 1 byte 0x06
Register Address 2 bytes 0x0000 to 0xFFFF
Register Value 2 bytes 0x0000 to 0xFFFF

Function Code 06 (0x06) Write Single
Register
This function code writes a single 16-bit holding
register. The Request PDU specifies the address
of the register to be written and the 16-bit value

to write to the register packed in two bytes with
the first byte containing the high order bits and
the second byte containing the low order bits. The
Response PDU is an echo of the request.

952-500-6200 www.exlar.comTECH TIP

Response
Function Code 1 byte 0x06
Register Address 2 bytes 0x0000 to 0xFFFF
Register Value 2 bytes 0x0000 to 0xFFFF

Exception Response
Function Code 1 byte 0x86
Exception Code 1 byte 01, 02, 03, 04

Example
This example writes 16-bit holding register 356 (0x0164) with the value 23131 (0x5A5B).

Request Response
Function Code 0x06 Function Code 0x06
Register Address High 0x01 Register Address High 0x01
Register Address Low 0x64 Register Address Low 0x64
Register Value High 0x5A Register Value High 0x5A
Register Value Low 0x5B Register Value Low 0x5B

Function Code 16 (0x10) Write Multiple
Registers
This function code writes a contiguous block
of 16-bit holding registers. The Request PDU
specifies the starting register address, the
number of registers to write, the byte count of
data values in the request, and the list of data
values to write packed as two bytes per register

Request
Function Code 1 byte 0x10
Starting Address 2 bytes 0x0000 to 0xFFFF
Number of Registers 2 bytes 1 to 60
Byte Count 1 byte 2 x N*
Register Value(s) 2 x N* bytes value(s)

*N = number of registers

Response
Function Code 1 byte 0x10
Starting Address 2 bytes 0x0000 to 0xFFFF
Number of Registers 2 bytes 1 to 60

with the first byte containing the high order bits
and the second byte containing the low order bits.
The Response PDU echoes the starting address
and number of registers written (but does not
return the byte count and data written).

952-500-6200 www.exlar.comTECH TIP

Exception Response
Function Code 1 byte 0x90
Exception Code 1 byte 01, 02, 03, 04

Example
This example writes 16-bit holding registers 356 (0x0164) and 357 (0x0165) with the values

258 (0x0201) and 772 (0x0403) respectively.

Request Response
Function Code 0x10 Function Code 0x10
Starting Address High 0x01 Starting Address High 0x01
Starting Address Low 0x64 Starting Address Low 0x64
Number of Registers High 0x00 Number of Registers High 0x00
Number of Registers Low 0x02 Number of Registers Low 0x02
Byte Count 0x04
Register 356 Value High 0x02
Register 356 Value Low 0x01
Register 357 Value High 0x04
Register 357 Value Low 0x03

Function Code 17 (0x11) Report Slave ID
This function code may be used to ‘ping’ the drive.
The Request PDU has a null (zero length) data
field. The Response PDU returns the drive type
and 16-character ASCII name.

Request
Function Code 1 byte 0x11

Response
Function Code 1 byte 0x11
Byte Count 1 byte 0x12
Drive Type 1 byte *
Drive Name 16 bytes 0x20 to 0x7F
Run Indicator Status 1 byte 0xFF (ON)

* 0 = EM20, 1 = EM30

Exception Response
Function Code 1 byte 0x91
Exception Code 1 byte 01, 04

952-500-6200 www.exlar.comTECH TIP

Example
This example shows the response to a ping from an EM30 drive named ‘Main Valve’.

Request Response
Function Code 0x11 Function Code 0x11

Byte Count 0x12
(EM30) Drive Type 0x01
(M) DriveName 0x4C
(a) 0x60
(i) 0x68
(n) 0x6D
(space) 0x20
(V) 0x55
(a) 0x60
(l) 0x6B
(v) 0x75
(e) 0x64
(space) 0x20
(space) 0x20
(space) 0x20
(space) 0x20
(space) 0x20
(space) 0x20
(constant) 0xFF

Function Code 103 (0x67) Read 32-bit
Holding Registers
This custom function code reads a contiguous
block of 32-bit holding registers. The Request
PDU specifies the starting register address
and the number of 32-bit registers to read. The
Response PDU returns each register values
packed in four bytes with the first byte containing
the most significant (high order) eight bits, the

Request
Function Code 1 byte 0x67
Starting Address 2 bytes 0x0000 to 0xFFFF
Number of 32-bit Registers 2 bytes 1 to 30

second byte containing the next most significant
eight bits (i.e. the low byte of the high word), the
third byte containing the next most significant
eight bits (i.e. the high byte of the low word),
and the fourth byte containing the least eight
significant bits (i.e. the low byte of the low word).
Each 32-bit register value read in an atomic
operation.

952-500-6200 www.exlar.comTECH TIP

Response
Function Code 1 byte 0x67
Byte Count 1 byte 4 x N*
Register Value(s) 4 x N* bytes value(s)

*N = number of 32-bit registers

Exception Response
Function Code 1 byte 0xE7
Exception Code 1 byte 01, 02, 03, 04

Example
This example read the 16-bit holding registers 100 (0x64) and 101 (0x65) in the function code
3 example using the 32-bit register read command . The value returned for the 32- bit register

100 is 65536500 (0x03E801F4) .

Request Response
Function Code 0x67 Function Code 0x67
Starting Address High 0x00 Byte Count 0x04
Starting Address Low 0x64 Register 101 Value High 0x03
Register Count High 0x00 Register 101 Value Low 0xE8
Register Count Low 0x01 Register 100 Value High 0x01

Register 100 Value Low 0xF4

Request
Function Code 1 byte 0x68
Starting Address 2 bytes 0x0000 to 0xFFFF
Number of 32-bit Registers 2 bytes 1 to 30

Response
Function Code 1 byte 0x68
Byte Count 1 byte 4 x N*
Register Value(s) 4 x N* bytes value(s)

*N = number of 32-bit registers

Function Code 104 (0x68) Read 32-bit
Input Registers
This custom function code reads a contiguous
block of 32-bit input registers. The Request PDU
specifies the starting register address and the
number of 32-bit registers to read. The Response
PDU returns each register values packed in
four bytes with the first byte containing the most
significant (high order) eight bits, the second byte

containing the next most significant eight bits
(i.e. the low byte of the high word), the third byte
containing the next most significant eight bits (i.e.
the high byte of the low word), and the fourth byte
containing the least eight significant bits (i.e. the
low byte of the low word). Each 32-bit register
value read in an atomic operation.

952-500-6200 www.exlar.comTECH TIP

Exception Response
Function Code 1 byte 0xE8
Exception Code 1 byte 01, 02, 03, 04

Example
This example reads 32-bit input register 4 as in the example used for function code 4.

The returned value is 2147450880 (0x7FFF8000).

Request Response
Function Code 0x68 Function Code 0x68
Starting Address High 0x00 Byte Count 0x04
Starting Address Low 0x04 Register 5 Value High 0x7F
Register Count High 0x00 Register 5 Value Low 0xFF
Register Count Low 0x01 Register 4 Value High 0x80

Register 4 Value Low 0x00

Example
This example reads 32-bit input registers 4 and 6. The returned value for 32-bit register 4 is

2147450880 (0x7FFF8000), and the returned value for 32-bit register 6 is 10000000 (0x00989680).

Request Response
Function Code 0x68 Function Code 0x68
Starting Address High 0x00 Byte Count 0x04
Starting Address Low 0x04 Register 5 Value High 0x7F
Register Count High 0x00 Register 5 Value Low 0xFF
Register Count Low 0x02 Register 4 Value High 0x80

Register 4 Value Low 0x00
Register 7 Value High 0x00
Register 7 Value Low 0x98
Register 6 Value High 0x96
Register 6 Value Low 0x80

Function Code 106 (0x6A) Write 32-bit
Holding Register
This custom function code writes a single 32-bit
holding register. The Request PDU specifies the
address of the register to be written. MODBUS
registers in the PDU are addressed starting
at zero. The Response PDU is an echo of the
request.

This function code writes a single 32-bit holding
register. The Request PDU specifies the address
of the register to be written and the 32-bit value
to write to the register packed in four bytes with

the first byte containing the most significant (high
order) eight bits, the second byte containing the
next most significant eight bits (i.e. the low byte
of the high word), the third byte containing the
next most significant eight bits (i.e. the high byte
of the low word), and the fourth byte containing
the least eight significant bits (i.e. the low byte of
the low word). The Response PDU is an echo of
the request.

952-500-6200 www.exlar.comTECH TIP

Note that function code 16 (0x10) for writing
multiple 16-bit registers may be used (with a
register count of two) to read a 32-bit holding
register value. The drive,however,stores32-bit
numbers internally in Little Endian format with
the low word first so function code 16 must
specify the low word (least significant 16-bits)
first, followed by the high word (most significant
16-bits) to write the 32-bit register value. Using
(custom) function code 106 (0x6A) instead offers
the following advantages:

•	 Register byte order is the normal MODBUS
high tolow

•	 The 32-bit write is guaranteed to be atomic
(i.e. a single non-interruptible operation).

•	 Transmission efficiency – the total request/
response transaction requires fourteen
bytes as opposed to the fifteen required by
function code16.

Request
Function Code 1 byte 0x6A
Register Address 2 bytes 0x00000000 to 0xFFFFFFFF
Register Value 4 bytes 0x00000000 to 0xFFFFFFFF

Response
Function Code 1 byte 0x6A
Register Address 2 bytes 0x00000000 to 0xFFFFFFFF
Register Value 4 bytes 0x00000000 to 0xFFFFFFFF

Exception Response
Function Code 1 byte 0xEA
Exception Code 1 byte 01, 02, 03, 04

Example
This example writes 32-bit holding register 356 (0x0164) with the value 67305985 (0x04030201).

Upon completion, 16-bit register 356 hold the value 0x0201 and 16-bit register 357 holds the value
0x0403. Compare with the example for function code 6 (Write Multiple 16-bit Registers) which

obtains the same result.
Request Response

Function Code 0x10 Function Code 0x10
Register Address High 0x01 Register Address High 0x01
Register Address Low 0x64 Register Address Low 0x64
Register 357 Value High 0x04 Register 357 Value High 0x04
Register 357 Value Low 0x03 Register 357 Value Low 0x03
Register 356 Value High 0x02 Register 356 Value High 0x02
Register 356 Value Low 0x01 Register 356 Value Low 0x01

952-500-6200 www.exlar.comTECH TIP

MODBUS RS485 Serial
This section describes the specifics of the
MODBUS RTU protocol implementation over a
serial line that implements an electrical interface
in accordance with the EIA/TIA-485 standard
(also known as the RS485 standard). The Tritex
uses a two-wire (balanced pair with common)
RS485 configuration on which only one driver can
transmit at a given time.

Serial Character Format
Each eight-bit data byte of the ADU is normally
transmitted as an 11-bit serial character in the
following format:

Serial Character Format
Number of Bits Definition

1 Start bit
8 Data bits
1 Parity Bit
1 Stop bit

The Tritex implementation uses even parity by
default as required by the MODBUS specification
but optionally accepts odd or no parity. If no parity
is specified, an additional stop bit is transmitted
to fill out the 11-bit serial character.

Serial Data Rates
The Tritex implementation sets 19.2K baud (bits/
sec) as the default serial signal rate as specified
by the MODBUS specification. Other standard
rates available include 4800, 9600, and 38.4K
baud.

The time required to transmit a serial character
is dependent on the baud rate and may be
calculated as:

Character Time (sec/character) =
(11 bits/character) / (baud bits/sec)

RTU Message Framing
A MODBUS message is transmitted as a frame
with a known beginning and end point allowing
devices to determine when a new message is
starting and when a message being received has
is completed. To accomplish this goal MODBUS
defines two timing constraints – a minimum frame
interval and a maximum character interval.

Frame Interval
Frames (messages) must be separated by a
silent interval (no activity on the serial line)
of at least 3.5 character times. This idle time
requirement allows a receiver to know when it
should begin looking for a new incoming frame
and forces a transmitter to delay its response
until the idle time requirement has been met. In
the Tritex implementation, the minimum frame
interval may be extended, if desired, to allow
more setup time for slower devices or to allow
extra time for the master to guarantee that the
RS485 line is not being driven before the drive
attempts transmission. (Note, however, that the
extended frame interval applies only to the time
the drive will keep the line idle before transmitting
its response, not to the idle time expected by the
drive before expecting a new request.)

Valid MODBUS Frames
3.5 ch
time
(min)

Frame1 3.5 ch
time
(min)

Frame2 3.5 ch
time
(min)

Character Interval
MODBUS messages must be transmitted as a
continuous stream of characters. When a silent
interval of greater than 1.5 character times is
detected between incoming characters the
message is considered complete. The frame
interval time must still be met, however, so if
another character is received before the minimum
frame interval time is met the message should be
aborted. The Tritex implementation allows for an
additional user specified extra character interval
time to ease the implementation of slower master
devices that cannot guarantee an uninterrupted
character transmission stream to the drive.

952-500-6200 www.exlar.comTECH TIP

Invalid MODBUS Frame
3.5 ch
time
(min)

Frame1 1.0 ch
time

Unexpected
Frame

…

Error Checking
Security for MODBUS RTU relies on both the
hardware parity error checking (unless the no
parity option is set) and the software CRC error
checking of the ADU. The drive (slave) will not
construct a response to the master if an error
is detected from either of the error checking
methods and the master should eventually
timeout.

Master Timeout
The master (client) should implement a maximum
time (timeout) that it is willing to wait for a
response, allowing it to recover when a response
is not forthcoming from the drive. Note that a
timeout will also allow it to recover from a request

to a non-existent slave device. In the Tritex
implementation, the drive will normally respond
immediately and the master can expect to start
receiving the response within a character time or
two from the end of the required minimum frame
interval. Extra time, however, may be required by
some drive commands such as those that require
the writing of non-volatile memory.

CRC (Cyclical Redundancy Check)
Generation
The CRC (Cyclical Redundancy Check) is a
two byte (16-bit) field in the ADU calculated
by the transmitting device and used by the
receiving device to validate the ADU. The CRC is
calculated over address byte of the ADU and all
data bytes of the PDU and then appended to the
message to complete ADU. When transmitted,
the low-order byte of the CRC is transmitted first,
followed by the high-order byte. The following
example shows the layout of the CRC within the
ADU.

Example ADU for calculated CRC of 0x1234
Address Function Code (Data) CRC LO CRC HI

byte byte [byte(s)]… 0x34 0x12

CRC Algorithm Description
The 16-bit binary CRC value is initialized to
all ones (0xFFFF). Each eight-bit byte of the
message is then used to modify the CRC value.
Only the eight bits of data are used in generating
the CRC (start, stop, and parity bits are not
used). The CRC is modified to the exclusive or of
its original value with the zero-extended value of
the eight-bit data byte.

The CRC is then binary shifted right (with a zero
filled into the most significant bit position). If the
LSB (least significant bit) of the CRC before the
shift was a one, the CRC is exclusive or’ed with

the constant 0xA001. The process of shifting the
CRC (and optionally exclusive or’ing with the
constant 0xA001) is repeated for a total of eight
times. The final CRC value is then appended to
the ADU with the low byte being transmitted first.

Sample Code
The following pseudo-code shows one way
of directly implementing the CRC algorithm
described above. (Note that other, possibly faster,
methods may be implemented including direct
table lookup in a pre-calculated table of CRC
values for all possible data values.)

/* ---
Sample Pseudo - ‘C’ code for CRC Generation

--*/

typedef unsigned int UINT16; typedef unsigned
char UINT8;

UINT16 CalculateCRC(int dataCount, UINT8* ptrToData)
{

int i;
UINT16 crc=0xFFFF; /* Initialize result*/
UINT16carryOut; /* True if shift would generate carry*/

/* (i.e. low bit was a one) */

/* Loop thru all data bytes */ while
(dataCount-- != 0)
{

crc ^= (UINT16) (*ptrToData++);

for (i = 0; i < 8;i++)
{

carryOut = crc & 0x0001; crc >>= 1;
if (carryOut)
{

crc ^= 0xA001;
}

}
}

/* Return 16-bit CRC value – low byte of this value sent first */ return crc;
}

952-500-6200 www.exlar.comTECH TIP

the constant 0xA001. The process of shifting the
CRC (and optionally exclusive or’ing with the
constant 0xA001) is repeated for a total of eight
times. The final CRC value is then appended to
the ADU with the low byte being transmitted first.

Sample Code
The following pseudo-code shows one way
of directly implementing the CRC algorithm
described above. (Note that other, possibly faster,
methods may be implemented including direct
table lookup in a pre-calculated table of CRC
values for all possible data values.)

/* ---
Sample Pseudo - ‘C’ code for CRC Generation

--*/

typedef unsigned int UINT16; typedef unsigned
char UINT8;

UINT16 CalculateCRC(int dataCount, UINT8* ptrToData)
{

int i;
UINT16 crc=0xFFFF; /* Initialize result*/
UINT16carryOut; /* True if shift would generate carry*/

/* (i.e. low bit was a one) */

/* Loop thru all data bytes */ while
(dataCount-- != 0)
{

crc ^= (UINT16) (*ptrToData++);

for (i = 0; i < 8;i++)
{

carryOut = crc & 0x0001; crc >>= 1;
if (carryOut)
{

crc ^= 0xA001;
}

}
}

/* Return 16-bit CRC value – low byte of this value sent first */ return crc;
}

